Case-Based Bayesian Network Classifiers

نویسندگان

  • Eugene Santos
  • Ahmed Hussein
چکیده

We propose a new approach for learning Bayesian classifiers from data. Although it relies on traditional Bayesian network (BN) learning algorithms, the effectiveness of our approach lies in its ability to organize and structure the data in such a way that allows us to represent the domain knowledge more accurately than possible in traditional BNs. We use clustering to partition the data into meaningful patterns, where each pattern is characterized and discriminated from other patterns by an index. These patterns decompose the domain knowledge into different components with each component defined by the context found in its index. Each component can then be represented by a local BN. We argue that this representation is more expressive than traditional BNs in that it can represent domain dependency assertions more precisely and relevantly. Our empirical evaluations show that using our proposed approach to learning classifiers results in improved classification accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Case-Based Bayesian Network and Recursive Bayesian Multi-Net Classifiers

Recent work in Bayesian classifiers has shown that a better and more flexible representation of domain knowledge results in more accurate classifiers. We have recently examined a new type of Bayesian classifiers called Case-Based Bayesian Network (CBBN) classifiers. The basic idea is to partition the training data into semantically sound clusters. A local BN classifier is then learned independe...

متن کامل

Bayesian Network Classifiers Versus k-NN Classifier Using Sequential Feature Selection

The aim of this paper is to compare Bayesian network classifiers to the k-NN classifier based on a subset of features. This subset is established by means of sequential feature selection methods. Experimental results show that Bayesian network classifiers more often achieve a better classification rate on different data sets than selective k-NN classifiers. The k-NN classifier performs well in ...

متن کامل

Exploring Case-Based Bayesian Networks and Bayesian Multi-nets for Classification

Recent work in Bayesian classifiers has shown that a better and more flexible representation of domain knowledge results in better classification accuracy. In previous work [1], we have introduced a new type of Bayesian classifier called Case-Based Bayesian Network (CBBN) classifiers. We have shown that CBBNs can capture finer levels of semantics than possible in traditional Bayesian Networks (...

متن کامل

Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers

We introduce a simple order-based greedy heuristic for learning discriminative structure within generative Bayesian network classifiers. We propose two methods for establishing an order of N features. They are based on the conditional mutual information and classification rate (i.e., risk), respectively. Given an ordering, we can find a discriminative structure with O ( Nk+1 ) score evaluations...

متن کامل

Stochastic margin-based structure learning of Bayesian network classifiers

The margin criterion for parameter learning in graphical models gained significant impact over the last years. We use the maximum margin score for discriminatively optimizing the structure of Bayesian network classifiers. Furthermore, greedy hill-climbing and simulated annealing search heuristics are applied to determine the classifier structures. In the experiments, we demonstrate the advantag...

متن کامل

Are two classifiers performing the same? – a treatment using Bayesian Hypothesis Testing

We consider here how to assess if two classifiers, based on a set of test error results, are performing equally well. This question is often considered in the realm of sampling theory, based on classical hypothesis testing. Here we present a simple Bayesian treatment that is quite general, and also is able to deal with the (practically common) case where the errors that two classifiers make are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004